Question Number	Answer	Additional Guidance	Mark
1(a)	1. cellulose (molecule) is a \{ polymer / chain / eq \} of β-glucose / eq ; 2. cellulose molecules held together \{ by hydrogen bonds / as microfibrils \} ; 3. idea of arrangement of microfibrils in \{ parallel / net / mesh / criss cross / eq \} ; 4. reference to \{ matrix / hemicelluloses /pectin / eq \} ;	1. CCEPT many β-glucose 4. IGNORE lignin	
			(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (b) (i)}$	1. $\{$ group of / many / several / eq \} cells ; 2. idea that the cells in a tissue \{ work together / eq \} for a common function ;		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (b) (i i)}$	1. idea that lignin holds the \{ fibres / microfibrils \} together ;		
2. lignin keeps \{ fibres / microfibrils \} parallel / eq ;			

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (c) (i)}$	1. \{ hollow / no cytoplasm / eq \} ; 2. idea that vessels \{ have no end walls / are open at the ends \}; 3. vessels \{ have pits / are strong so that they do not collapse \}; 4. lignin makes the walls waterproof / eq ;	1. IGNORE dead, tube ACCEPT has a lumen	3. ACCEPT strong to keep tube open

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (c) (i i)}$	1. nitrate for production of \{ amino acids / protein / DNA / nucleic acids / bases / eq \} ;	1. CCEPT chlorophyll, enzymes	
2. calcium for \{ pectate / pectin / middle lamella \} ; 3. magnesium for chlorophyll ;		(3)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 (a)}$	1. renewable / eq ; 2. resources can be made available for future generations / will not run out / eq ; 3. more (Canola) plants can be grown / eq ;	2. ACC T not finite ACCEPT references to either oil or plants not running out	

Question Number	Answer	Additional guidance	Mark
2(b)	1. amino acids OR proteins ; 2. idea of used in synthesis of \{ nucleic acids / DNA / ATP\} ;	2. ACCEP RNA, NAD, NADP, ADP, chlorophyll	
3. idea of how this organic compound is used in growth;	3.amino acids) for the synthesis of proteins, (proteins) as enzymes, (nucleic acids) for cell division, (ATP) as an energy source	(2)	

Question Number	Answer	Mark
2(c) (i)	A a negative correlation;	(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 (c) (i i)}$	1. correct values from graph, i.e. 2.40 and $3.30 ;$	Correct answer gains 3 marks 1.2 .4 and 3.3 $2 .(30-2.40) \times 100 / 2.40$ ACCEPT (difference \div original value) $\times 100$ if incorrect values selected from graph	
	2. difference divided by 2.4, e.g. $(0.9 \div 2.4) \times 100 ;$	(3)	

Question Number	Answer	Additional guidance	Mark
2(c)(iii)	1. idea of using genetically similar plants e.g. raised from seeds from same plant, clones ; 2. idea of repeats \{at each level of nitrate fertiliser / used to produce mean data / to identify outliers or anomalies\} ; 3. environmental variable related to soil controlled e.g. soil pH, concentration of other mineral ions ; 4. another environmental variable controlled e.g. temperature, light (intensity), water ; 5. idea of control described, e.g. no nitrate/ soil with no extra nitrate ; 6. idea of same method of extraction of oil used ;	IGNORE reference to time as the investigation is measuring seed production 1. ACCEPT cuttin 3. A EPT same area, location	(4)

Question Number	Answer	Mark
$\mathbf{3 (a)}$	B 2	(1) COMP

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	1. (only) contain hydrogen, carbon and oxygen ; 2. reference to fatty acids and glycerol \{joined by / eq\} ester\{bonds / eq\}; 3. idea of saturated and unsaturated (fatty acids /		
	lipids);	(2) RAD	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{3 (b) (i i)}$	1. uses less fertiliser / eq ; 2. idea of not using more pesticides / eq ; 3. idea that greenhouse gas emissions are not that different ; 4. credit manipulation of figures to support marking point 3;	1.2. IGNORE comparisons between the different crops 3. ACCEPT less than corn but more than sugar cane	

Question Number	Answer	Additional Guidance	Mark
3(b)(iii)	1. credit three correctly named ions ; 2. nitrates for \{protein / amino acids / nucleic acids / named nucleic acid\} ; 3. proteins used for growth ; 4. calcium ions for \{other nutrients uptake / promotes cell elongation / strengthen cell walls / enzyme function / protection against heat stress / protection against diseases / eq\} ; 5. magnesium ions for chlorophyll production ; 6. for photosynthesis ;	1. e.g. nitrates, calcium ions, magnesium ions, sulphates, potassium ions, phosphates ACCEPT Sulphates for amino acids Potassium ions for stomata function	(4) EXP

Question Number	Answer	Mark
4(a)	B ;	(1)

Question Number	Answer	Mark
4(b)	D;	$\mathbf{(1)}$

Question Number	Answer	Mark
*4(c) QWC	(QWC - Spelling of technical terms (shown in italics) must be correct and the answer must be organised in a logical sequence) succession described: 1. reference to lichens and mosses as pioneer community ; 2. able to grow in $\{$ little / no \} soil / eq ; 3. (that) breaks up (rock) fragments / forms \{thin / shallow / eq\} soil; 4. reference to $\{p l a n t s / e q\}$ with $\{s m a l l /$ short / eq\} roots ; 5. (able to) grow in $\{$ thin / shallow / eq\} soil / eq ; 6. idea that changes in soil structure enable \{trees / shrubs\} to grow / eq ; general points: 7. reference to soil able to \{hold / retain / contain / eq\} \{water / minerals\} ; 8. as plants \{lose leaves / die / decay / eq\}; 9. reference to \{organic matter / humus / eq\} \{increases/ released/eq\}; 10. reference to competition effects ;	(5)

Question Number	Answer	Mark
4 (d)	1. climax (community) ; 2ny three from: 2. includes (both) animals and plants / has many species / has high biodiversity / eq ;	
3. reference to \{interaction / eq\} between species / eq ;	4. idea of balanced equilibrium of species ; 5. reference to \{dominant / codominant (plant or animal) species ; 6. reference to stable if no \{change to environment / human influence\} ;	(4)

